Perch size and structure have species-dependent effects on the arboreal locomotion of rat snakes and boa constrictors.

نویسندگان

  • Bruce C Jayne
  • Michael P Herrmann
چکیده

Arboreal habitats create diverse challenges for animal locomotion, but the numerical and phylogenetic diversity of snakes that climb trees suggest that their overall body plan is well suited for this task. Snakes have considerable diversity of axial anatomy, but the functional consequences of this diversity for arboreal locomotion are poorly understood because of the lack of comparative data. We simulated diverse arboreal surfaces to test whether environmental structure had different effects on the locomotion of snakes belonging to two distantly related species with differences in axial musculature and stoutness. On most cylindrical surfaces lacking pegs, both species used concertina locomotion, which always involved periodic stopping and gripping but was kinematically distinct in the two species. On horizontal cylinders that were a small fraction of body diameter, the boa constrictors used a balancing form of lateral undulation that was not observed for rat snakes. For all snakes the presence of pegs elicited lateral undulation and enhanced speed. For both species maximal speeds decreased with increased incline and were greatest on cylinders with intermediate diameters that approximated the diameter of the snakes. The frictional resistances that we studied had small effects compared with those of cylinder diameter, incline and the presence of pegs. The stouter and more muscular boa constrictors were usually faster than the rat snakes when using the gripping gait, whereas rat snakes were faster when using lateral undulation on the surfaces with pegs. Thus, variation in environmental structure had several highly significant effects on locomotor mode, performance and kinematics that were species dependent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why arboreal snakes should not be cylindrical: body shape, incline and surface roughness have interactive effects on locomotion.

Depending on animal size, shape, body plan and behaviour, variation in surface structure can affect the speed and ease of locomotion. The slope of branches and the roughness of bark both vary considerably, but their combined effects on the locomotion of arboreal animals are poorly understood. We used artificial branches with five inclines and five peg heights (≤40 mm) to test for interactive ef...

متن کامل

Effects of perch diameter and incline on the kinematics, performance and modes of arboreal locomotion of corn snakes (Elaphe guttata).

Animals moving through arboreal habitats face several functional challenges, including fitting onto and moving on cylindrical branches with variable diameters and inclines. In contrast to lizards and primates, the arboreal locomotion of snakes is poorly understood, despite numerous snake species being arboreal. We quantified the kinematics and performance of corn snakes (Elaphe guttata) moving ...

متن کامل

Substrate diameter and compliance affect the gripping strategies and locomotor mode of climbing boa constrictors.

Arboreal habitats pose unique challenges for locomotion as a result of their narrow cylindrical surfaces and discontinuities between branches. Decreased diameter of branches increases compliance, which can pose additional challenges, including effects on stability and energy damping. However, the combined effects of substrate diameter and compliance are poorly understood for any animal. We quan...

متن کامل

Snakes mimic earthworms: propulsion using rectilinear travelling waves.

In rectilinear locomotion, snakes propel themselves using unidirectional travelling waves of muscular contraction, in a style similar to earthworms. In this combined experimental and theoretical study, we film rectilinear locomotion of three species of snakes, including red-tailed boa constrictors, Dumeril's boas and Gaboon vipers. The kinematics of a snake's extension-contraction travelling wa...

متن کامل

Arboreal habitat structure affects the performance and modes of locomotion of corn snakes (Elaphe guttata).

Arboreal environments pose many functional challenges for animal locomotion including fitting within narrow spaces, balancing on cylindrical surfaces, moving on inclines, and moving around branches that obstruct a straight path. Many species of snakes are arboreal and their elongate, flexible bodies appear well-suited to meet many of these demands, but the effects of arboreal habitat structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 13  شماره 

صفحات  -

تاریخ انتشار 2011